Search
Research
Tumor site-directed A1R expression enhances CAR T cell function and improves efficacy against solid tumorsCitation: Sek K, Chen AXY, Cole T, Armitage JD, Tong J, ……… Waithman J, Parish IA, et al. Tumor site-directed A1R expression enhances CAR T cell
Research
Abacavir inhibits but does not cause self-reactivity to HLA-B*57:01-restricted EBV specific T cell receptorsPre-existing pathogen-specific memory T cell responses can contribute to multiple adverse outcomes including autoimmunity and drug hypersensitivity. How the specificity of the T cell receptor (TCR) is subverted or seconded in many of these diseases remains unclear. Here, we apply abacavir hypersensitivity (AHS) as a model to address this question because the disease is linked to memory T cell responses and the HLA risk allele, HLA-B*57:01, and the initiating insult, abacavir, are known.
Research
Cancer chemotherapy: insights into cellular and tumor microenvironmental mechanisms of actionChemotherapy has historically been the mainstay of cancer treatment, but our understanding of what drives a successful therapeutic response remains limited.
Research
Experience of patients with lung cancer and with targeted therapy-related skin adverse drug reactions: A qualitative studyTo explore the experience of non-small-cell lung cancer patients with targeted therapy-related skin adverse drug reactions.
Research
Comprehensive Testing of Chemotherapy and Immune Checkpoint Blockade in Preclinical Cancer Models Identifies Additive CombinationsAntibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA‐4) and the programmed cell death protein 1/ligand 1 (PD-1/PD-L1) are now a treatment option for multiple cancer types. However, as a monotherapy, objective responses only occur in a minority of patients. Chemotherapy is widely used in combination with immune checkpoint blockade (ICB). Although a variety of isolated immunostimulatory effects have been reported for several classes of chemotherapeutics, it is unclear which chemotherapeutics provide the most benefit when combined with ICB.
Research
Making a Killer: Selecting the Optimal Natural Killer Cells for Improved ImmunotherapiesOver the past 20 years natural killer (NK) cell-based immunotherapies have emerged as a safe and effective treatment option for patients with relapsed or refractory leukemia. Unlike T cell-based therapies, NK cells harbor an innate capacity to eliminate malignant cells without prior sensitization and can be adoptively transferred between individuals without the need for extensive HLA matching.
Research
Transcriptional rewiring in CD8+ T cells: implications for CAR-T cell therapy against solid tumoursT cells engineered to express chimeric-antigen receptors (CAR-T cells) can effectively control relapsed and refractory haematological malignancies in the clinic. However, the successes of CAR-T cell therapy have not been recapitulated in solid tumours due to a range of barriers such as immunosuppression, poor infiltration, and tumour heterogeneity.
Research
Novel GABAAR antagonists target networked gene hubs at the leading-edge in high-grade gliomasIon channel activity underlying biological processes that drive high-grade gliomas (HGG) is largely unknown. We aimed to determine the networking of ion channel genes and validate their expression within HGG patient tumors, to identify ion channel-targeting drugs that would inhibit tumor-promoting processes.
Research
Catalysing change in health and medical research policy: an Australian case study of deliberative democracy to reform sex and gender policy recommendationsRevising public health policy based on new data does not happen automatically. This is acutely relevant to the now undeniable evidence that many diseases develop differently between the sexes and may also be affected by gender. Current health and medical practices across the globe generally fail to cater for sex and gender effects in common diseases.
Research
Immune checkpoint therapy responders display early clonal expansion of tumor infiltrating lymphocytesImmune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRβ) repertoire dynamics contribute to the therapeutic response.