Skip to content
The Kids Research Institute Australia logo
Donate

No results yet

Search

Research

Impaired airway epithelial cell responses from children with asthma to rhinoviral infection

Human rhinovirus infection delays repair and inhibits apoptotic processes in epithelial cells from non-asthmatic and asthmatic children

Research

Identification of epithelial phospholipase A2 receptor 1 as a potential target in asthma

PLA2R1 is increased in the airway epithelium in asthma, and serves as a regulator of airway hyperresponsiveness, airway permeability, antigen sensitization, and airway inflammation

Research

Vitamin D supplementation of initially vitamin D-deficient mice diminishes lung inflammation with limited effects on pulmonary epithelial integrity

In disease settings, vitamin D may be important for maintaining optimal lung epithelial integrity and suppressing inflammation, but less is known of its effects prior to disease onset.

Research

Productive infection of human embryonic stem cell-derived nkx2.1+ respiratory progenitors with human rhinovirus.

Our experiments provide proof of principle for the use of PSC-derived respiratory epithelial cells in the study of cell-virus interactions.

Research

Transcription factor p63 regulates key genes and wound repair in human airway epithelial Basal cells

The airway epithelium in asthma displays altered repair and incomplete barrier formation.

Research

Suppression of adrenomedullin contributes to vascular leakage and altered epithelial repair during asthma

The anti-inflammatory peptide, adrenomedullin (AM), and its cognate receptor are expressed in lung tissue, but its pathophysiological significance in airway...

Research

The airway epithelium is a direct source of matrix degrading enzymes in bronchiolitis obliterans syndrome

Long-term survival after lung transplantation is hindered by the development of bronchiolitis obliterans syndrome (BOS).

Research

Bacteriophage: A new therapeutic player to combat neutrophilic inflammation in chronic airway diseases

Persistent respiratory bacterial infections are a clinical burden in several chronic inflammatory airway diseases and are often associated with neutrophil infiltration into the lungs. Following recruitment, dysregulated neutrophil effector functions such as increased granule release and formation of neutrophil extracellular traps (NETs) result in damage to airway tissue, contributing to the progression of lung disease.

Research

Accumulation mode particles and LPS exposure induce TLR-4 dependent and independent inflammatory responses in the lung

We aimed to delineate the effects of LPS and AMP on airway inflammation, and potential contribution to airway disease by measuring airway inflammatory responses

Research

Conditionally reprogrammed primary airway epithelial cells maintain morphology, lineage and disease specific functional characteristics

Here, we show that conditionally reprogrammed airway epithelial cells (CRAECs) can be established from both healthy and diseased phenotypes.